積分小技巧(一):餘弦倒數的積分
本文簡介一些含有餘弦倒數的積分實例。由於正弦、餘弦函數之間有 $\sin x = \cos (x-\pi/2)$ 的關係,以下的方法也適用於含有正弦倒數的積分。
1 例子
範例 1 對任意 $0 < a < \pi/2$,我們嘗試計算 \[\begin{split} \rule[-2.8ex]{0pt}{6.8ex} \int_0^a \frac{1}{\cos x}\,\d{x} \period \end{split}\]
利用變數變換(可參見〈達布積分(四):積分技巧〉),可得 \[\begin{split} \int_0^a \frac{1}{\cos x}\,\d{x} \rule[-2.8ex]{0pt}{6.8ex}&= \int_0^a \frac{\cos x}{1 - (\sin x\kern-1mu)^2}\,\d{x} \\ \rule[-2.8ex]{0pt}{6.8ex}&= \int_0^{\sin a} \frac{1}{1-u^2}\,\d{u} \\ \rule[-2.8ex]{0pt}{6.8ex}&= \int_0^{\sin a} \frac{1}{2}\biggl(\frac{1}{1+u}+\frac{1}{1-u}\biggr)\,\d{u} \\ \rule[-2.8ex]{0pt}{6.8ex}&= \frac{\ln (1+\sin a) - \ln (1-\sin a)}{2} \period \end{split}\]
這個結果也可以進一步化簡為 \[\begin{split} \frac{\ln (1+\sin a) - \ln (1-\sin a)}{2} \rule[-2.3ex]{0pt}{5.8ex}&= \ln (1+\sin a) - \frac{\ln (1+\sin a) + \ln (1-\sin a)}{2} \\ \rule[-1.8ex]{0pt}{4.8ex}&= \ln(1+\sin a) - \frac{\ln((\cos a)^2)}{2} \\ \rule[-2.3ex]{0pt}{5.8ex}&= \ln\biggl(\frac{1+\sin a}{\cos a}\biggr)\period \end{split}\]
範例 2 對任意 $0 < a < \pi/2$,我們嘗試計算 \[\begin{split} \rule[-2.8ex]{0pt}{6.8ex}\int_0^a \frac{1}{(\cos x\kern-2mu)^3}\,\d{x} \period \end{split}\]
利用分部積分(可參見〈達布積分(四):積分技巧〉),可得 \[\begin{split} \int_0^a \frac{1}{(\cos x\kern-2mu)^3}\,\d{x} \rule[-2.8ex]{0pt}{6.8ex}&= \int_0^a \frac{1}{\cos x}\,\frac{1}{(\cos x\kern-2mu)^2}\,\d{x} \\ \rule[-2.8ex]{0pt}{6.8ex}&= \frac{1}{\cos a}\,\tan a - \int_0^a \frac{\tan x}{\cos x}\,\tan x\,\d{x} \\ \rule[-2.8ex]{0pt}{6.8ex}&= \frac{\tan a}{\cos a} - \int_0^a \frac{1}{\cos x}\biggl(\frac{1}{(\cos x\?\?)^2}-1\biggr)\,\d{x} \\ \rule[-2.8ex]{0pt}{6.8ex}&= \frac{\tan a}{\cos a} + \int_0^a \frac{1}{\cos x}\,\d{x} - \int_0^a \frac{1}{(\cos x\kern-2mu)^3}\,\d{x} \comma \end{split}\]
即 \[\begin{split} \rule[-2.8ex]{0pt}{6.8ex} 2\int_0^a \frac{1}{(\cos x\kern-2mu)^3}\,\d{x} = \frac{\tan a}{\cos a} + \int_0^a \frac{1}{\cos x}\,\d{x} \period \end{split}\]
利用範例 1 的結果,我們有 \[\begin{split} \rule[-2.8ex]{0pt}{6.8ex} \int_0^a \frac{1}{(\cos x\kern-2mu)^3}\,\d{x} = \frac{1}{2}\biggl(\frac{\tan a}{\cos a} + \ln \biggl(\frac{1+\sin a}{\cos a}\biggr)\biggr) \period \end{split}\]